Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 842
Filtrar
1.
Environ Int ; 186: 108655, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626494

RESUMO

The rhizosphere is one of the key determinants of plant health and productivity. Mixtures of pesticides are commonly used in intensified agriculture. However, the combined mechanisms underlying their impacts on soil microbiota remain unknown. The present study revealed that the rhizosphere microbiota was more sensitive to azoxystrobin and oxytetracycline, two commonly used pesticides, than was the microbiota present in bulk soil. Moreover, the rhizosphere microbiota enhanced network complexity and stability and increased carbohydrate metabolism and xenobiotic biodegradation as well as the expression of metabolic genes involved in defence against pesticide stress. Co-exposure to azoxystrobin and oxytetracycline had antagonistic effects on Arabidopsis thaliana growth and soil microbial variation by recruiting organic-degrading bacteria and regulating ABC transporters to reduce pesticide uptake. Our study explored the composition and function of soil microorganisms through amplicon sequencing and metagenomic approaches, providing comprehensive insights into the synergistic effect of plants and rhizosphere microbiota on pesticides and contributing to our understanding of the ecological risks associated with pesticide use.


Assuntos
Arabidopsis , Microbiota , Oxitetraciclina , Pirimidinas , Rizosfera , Microbiologia do Solo , Estrobilurinas , Arabidopsis/microbiologia , Arabidopsis/efeitos dos fármacos , Oxitetraciclina/toxicidade , Microbiota/efeitos dos fármacos , Poluentes do Solo/toxicidade , Praguicidas/toxicidade , Biodegradação Ambiental
2.
J Agric Food Chem ; 72(12): 6691-6701, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498985

RESUMO

To accelerate the development of novel fungicides, a variety of N-(pyrazol-5-yl)benzamide derivatives with a diphenylamine moiety were designed and synthesized using a pharmacophore recombination strategy based on the structure of pyrazol-5-yl-aminophenyl-benzamides. The bioassay results demonstrated that most of the target compounds had excellent in vitro antifungal activities against Sclerotinia sclerotiorum, Valsa mali, and Botrytis cinerea. In particular, compound 5IIIh exhibited remarkable activity against S. sclerotiorum (EC50 = 0.37 mg/L), which was similar to that of fluxapyroxad (EC50 = 0.27 mg/L). In addition, compound 5IIIc (EC50 = 1.32 mg/L) was observed to be more effective against V. mali than fluxapyroxad (EC50 = 12.8 mg/L) and comparable to trifloxystrobin (EC50 = 1.62 mg/L). Furthermore, compound 5IIIh demonstrated remarkable in vivo protective antifungal properties against S. sclerotiorum, with an inhibition rate of 96.8% at 100 mg/L, which was close to that of fluxapyroxad (99.6%). Compounds 5IIIc (66.7%) and 5IIIh (62.9%) exhibited good in vivo antifungal effects against V. mali at 100 mg/L, which were superior to that of fluxapyroxad (11.1%) but lower than that of trifloxystrobin (88.9%). The succinate dehydrogenase (SDH) enzymatic inhibition assay was conducted to confirm the mechanism of action. Molecular docking analysis further revealed that compound 5IIIh has significant hydrogen-bonding, π-π, and p-π conjugation interactions with ARG 43, SER 39, TRP 173, and TYR 58 in the binding site of SDH, and the binding mode was similar to that of the commercial fungicide fluxapyroxad. All of the results suggest that compound 5IIIh could be a potential SDH inhibitor, offering a valuable reference for future studies.


Assuntos
Acetatos , Amidas , Antifúngicos , Fungicidas Industriais , Iminas , Estrobilurinas , Relação Estrutura-Atividade , Antifúngicos/farmacologia , Difenilamina/química , Simulação de Acoplamento Molecular , Fungicidas Industriais/química , Benzamidas , Succinato Desidrogenase
3.
Food Chem ; 447: 139065, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38513485

RESUMO

The effect of vine leaves processing techniques on Azoxystrobin, Fenazaquin, and Indoxacarb residues was investigated. Residue extraction following field application of pesticides and leaf processing was carried out using the QuEChERS method, with analysis conducted by LC-MS/MS. In dry conservation, Azoxystrobin's half-life was estimated to exceed a year, Fenazaquin's was 18 days, and Indoxacarb's was 142 days. Azoxystrobin had a half-life of 261 days, Fenazaquin had a half-life of 9 days, and Indoxacarb's half-life exceeded a year in brine conservation. It is recommended to use dry conservation because it results in an average 60 % reduction in residue levels for the three pesticides. Boiling water significantly reduced pesticide residues (Azoxystrobin -40.3 %, Indoxacarb -22.4 %, and Fenazaquin -28.8 %). It is recommended to use boiling water for washing, as it shows an average removal rate of approximately 30 %. The health risk assessment indicated that consuming vine leaves posed no health risk for consumers, but overall exposure to residues must be considered.


Assuntos
Oxazinas , Resíduos de Praguicidas , Pirimidinas , Quinazolinas , Estrobilurinas , Espectrometria de Massas em Tandem , Cromatografia Líquida , Medição de Risco , Resíduos de Praguicidas/análise , Folhas de Planta/química , Água/análise
4.
ACS Nano ; 18(14): 10031-10044, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38547360

RESUMO

The increasing demand for improving pesticide utilization efficiency has prompted the development of sustainable, targeted, and stimuli-responsive delivery systems. Herein, a multi-stimuli-responsive nano/microcapsule bidirectional delivery system loaded with pyraclostrobin (Pyr) is prepared through interfacial cross-linking from a lignin-based Pickering emulsion template. During this process, methacrylated alkali lignin nanoparticles (LNPs) are utilized as stabilizers for the tunable oil-water (O/W) Pickering emulsion. Subsequently, a thiol-ene radical reaction occurs with the acid-labile cross-linkers at the oil-water interface, leading to the formation of lignin nano/microcapsules (LNCs) with various topological shapes. Through the investigation of the polymerization process and the structure of LNC, it was found that the amphiphilicity-driven diffusion and distribution of cyclohexanone impact the topology of LNC. The obtained Pyr@LNC exhibits high encapsulation efficiency, tunable size, and excellent UV shielding to Pyr. Additionally, the flexible topology of the Pyr@LNC shell enhances the retention and adhesion of the foliar surface. Furthermore, Pyr@LNC exhibits pH/laccase-responsive targeting against Botrytis disease, enabling the intelligent release of Pyr. The in vivo fungicidal activity shows that efficacy of Pyr@LNC is 53% ± 2% at 14 days postspraying, whereas the effectiveness of Pyr suspension concentrate is only 29% ± 4%, and the acute toxicity of Pyr@LNC to zebrafish is reduced by more than 9-fold compared with that of Pyr technical. Moreover, confocal laser scanning microscopy shows that the LNCs can be bidirectionally translocated in plants. Therefore, the topology-regulated bidirectional delivery system LNC has great practical potential for sustainable agriculture.


Assuntos
Lignina , Praguicidas , Estrobilurinas , Animais , Lignina/química , Praguicidas/farmacologia , Cápsulas/química , Emulsões/química , Peixe-Zebra , Água
5.
Sci Total Environ ; 926: 172022, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38552970

RESUMO

While combinations of pesticides better represent actual conditions within aquatic ecosystems, the specific toxic effects of these combinations have not been determined yet. The objective of this research was to assess the combined impact of imazalil and azoxystrobin on the hook snout carp (Opsariichthys bidens) and delve into the underlying causes. Our findings indicated that the 4-day LC50 value for imazalil (1.85 mg L-1) was greater than that for azoxystrobin (0.90 mg L-1). When imazalil and azoxystrobin were combined, they presented a heightened effect on the species. Enzyme activities like SOD, CAT, GST, and CarE, along with androgen and estrogen levels, displayed marked differences in most single and combined treatments in comparison to the baseline group. Moreover, four genes (mn-sod, cu-sod, il-1, and esr) related to oxidative stress, immunity, and the endocrine system exhibited more pronounced expression changes when exposed to combined pesticides rather than individual ones. Our tests revealed that the combined use of imazalil and azoxystrobin had more detrimental effect on aquatic vertebrates than when evaluated individually. This finding suggested that future ecological hazard analyses based only on individual tests might not sufficiently safeguard our aquatic ecosystems.


Assuntos
Carpas , Imidazóis , Praguicidas , Pirimidinas , Estrobilurinas , Poluentes Químicos da Água , Animais , Ecossistema , Superóxido Dismutase , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade
6.
Environ Pollut ; 348: 123833, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522608

RESUMO

Pyraclostrobin, a widely used fungicide, poses significant risks to both the environment and human health. However, research on the microbial degradation process of pyraclostrobin was scarce. Here, a pyraclostrobin-degrading strain, identified as Burkholderia sp. Pyr-1, was isolated from activated sludge. Pyraclostrobin was efficiently degraded by strain Pyr-1, and completely eliminated within 6 d in the presence of glucose. Additionally, pyraclostrobin degradation was significantly enhanced by the addition of divalent metal cations (Mn2+ and Cu2+). The degradation pathway involving ether bond and N-O bond cleavage was proposed by metabolite identification. The sodium alginate-immobilized strain Pyr-1 had a higher pyraclostrobin removal rate from contaminated lake water than the free cells. Moreover, the toxicity evaluation demonstrated that the metabolite 1-(4-chlorophenyl)-1H-pyrazol-3-ol significantly more effectively inhibited Chlorella ellipsoidea than pyraclostrobin, while its degradation products by strain Pyr-1 alleviated the growth inhibition of C. ellipsoidea, which confirmed that the low-toxic metabolites were generated from pyraclostrobin by strain Pyr-1. The study provides a potential strain Pyr-1 for the bioremediation in pyraclostrobin-contaminated aquatic environments.


Assuntos
Burkholderia , Chlorella , Fungicidas Industriais , Humanos , Fungicidas Industriais/toxicidade , Estrobilurinas , Água , Biodegradação Ambiental
7.
Environ Pollut ; 348: 123783, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38490525

RESUMO

The stingless bee Melipona scutellaris performs buzz pollination, effectively pollinating several wild plants and crops with economic relevance. However, most research has focused on honeybees, leaving a significant gap in studies concerning native species, particularly regarding the impacts of pesticide combinations on these pollinators. Thus, this study aimed to evaluate the sublethal effects of imidacloprid (IMD), pyraclostrobin (PYR), and glyphosate (GLY) on the behavior and fat body cell morphology and physiology of M. scutellaris. Foragers were orally exposed to the different pesticides alone and in combination for 48 h. Bees fed with contaminated solution walked less, moved slower, presented morphological changes in the fat body, including vacuolization, altered cell shape and nuclei morphology, and exhibited a higher count of altered oenocytes and trophocytes. In all exposed groups, alone and in combination, the number of cells expressing caspase-3 increased, but the TLR4 number of cells expressing decreased compared to the control groups. The intensity of HSP70 immunolabeling increased compared to the control groups. However, the intensity of the immunolabeling of HSP90 decreased in the IMD, GLY, and I + G (IMD + GLY) groups but increased in I + P-exposed bees (IMD + PYR). Alternatively, exposure to PYR and P + G (PYR + GLY) did not affect the immunolabeling intensity. Our findings demonstrate the hazardous effects and environmental consequences of isolated and combined pesticides on a vital neotropical pollinator. Understanding how pesticides impact the fat body can provide crucial insights into the overall health and survival of native bee populations, which can help develop more environmentally friendly approaches to agricultural practices.


Assuntos
60658 , Neonicotinoides , Nitrocompostos , Praguicidas , Estrobilurinas , Abelhas , Animais , Corpo Adiposo , Caminhada
8.
Chemosphere ; 354: 141659, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490616

RESUMO

This study investigated the occurrence and seasonal distribution of different classes of pesticides in surface waters of the Ondas River Watershed, as well as potential risks to the aquatic health and human water consumption in the western region of Bahia state, Brazil. Two gas chromatography-mass spectrometry analytical methods were applied to monitor 34 pesticides in water samples collected during both the dry and rainy seasons at 17 sites. Upon individual analysis, only γ-HCH, methoxychlor, demeton-S, methyl parathion, fenitrothion, chlorpyrifos, and azoxystrobin exhibited statistically significant differences between seasons. During rainy season, concentration medians of residues were higher for γ-HCH (74.7 ng L-1), methoxychlor (25.1 ng L-1), and azoxystrobin (47.2 ng L-1), potentially linked to historical contamination or illegal use. Conversely, pesticides like methyl parathion, fenitrothion, and chlorpyrifos, belonging to the organophosphate class, showed higher concentration medians in the dry period, measuring 75.1, 5.50, and 10.8 ng L-1, respectively, probably due to region crop activities. The risk quotient (RQ) assessment for aquatic life indicated that 59.0% of the samples in the dry season and 76.0% in the rainy season had RQ values greater than one, signifying a critical scenario for species conservation. Regarding human consumption, elevated risks were observed for heptachlor in both sampling periods and for azoxystrobin during the rainy season, surpassing RQ levels above 1, indicating danger in untreated water ingestion. Additionally, 24.0% and 53.0% of the samples in the dry and rainy seasons, respectively, contained at least one pesticide exceeding the EU resolution limit (100 ng L-1). Therefore, considering this information, implementing mitigation measures to avoid the river's contamination becomes imperative.


Assuntos
Clorpirifos , Metil Paration , Praguicidas , Pirimidinas , Estrobilurinas , Poluentes Químicos da Água , Humanos , Praguicidas/análise , Estações do Ano , Rios/química , Brasil , Água/análise , Hexaclorocicloexano/análise , Metoxicloro/análise , Fenitrotion , Poluentes Químicos da Água/análise , Medição de Risco , Monitoramento Ambiental/métodos
9.
Sci Total Environ ; 923: 171494, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453077

RESUMO

Pesticides and microplastics are common pollutants in soil environments, adversely affecting soil organisms. However, the combined toxicological effects of aged microplastics and pesticides on soil organisms are still unclear. In this study, we systematically studied the toxicological effects of azoxystrobin and four different aged polyethylene (PE) microplastics on earthworms (Eisenia fetida). The purpose was to evaluate the effects of aging microplastics on the toxicity of microplastics-pesticides combinations on earthworms. The results showed that different-aged PE microplastics promoted azoxystrobin accumulation in earthworms. Meanwhile, combined exposure to azoxystrobin and aged PE microplastics decreased the body weight of earthworms. Besides, both single and combined exposure to azoxystrobin and aged PE microplastics could lead to oxidative damage in earthworms. Further studies revealed that azoxystrobin and aged PE microplastics damage the intestinal structure and function of earthworms. Additionally, the combination of different aged PE microplastics and azoxystrobin was more toxic on earthworms than single exposures. The PE microplastics subjected to mechanical wear, ultraviolet radiation, and acid aging exhibited the strongest toxicity enhancement effects on earthworms. This high toxicity may be related to the modification of PE microplastics caused by aging. In summary, these results demonstrated the enhancing effects of aged PE microplastics on the toxicity of pesticides to earthworms. More importantly, aged PE microplastics exhibited stronger toxicity-enhancing effects in the early exposure stages. This study provides important data supporting the impact of different aged PE microplastics on the environmental risks of pesticides.


Assuntos
Oligoquetos , Praguicidas , Pirimidinas , Poluentes do Solo , Estrobilurinas , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Polietileno/toxicidade , Raios Ultravioleta , Poluentes do Solo/análise , Estresse Oxidativo , Solo/química
10.
Environ Int ; 186: 108608, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38554503

RESUMO

Bumblebees are among the most important wild bees for pollination of crops and securing wildflower diversity. However, their abundance and diversity have been on a steady decrease in the last decades. One of the most important factors leading to their decline is the frequent use of plant protection products (PPPs) in agriculture, which spread into forests and natural reserves. Mixtures of different PPPs pose a particular threat because of possible synergistic effects. While there is a comparatively large body of studies on the effects of PPPs on honeybees, we still lack data on wild bees. We here investigated the influence of the frequent fungicide Cantus® Gold (boscalid/dimoxystrobin), the neonicotinoid insecticide Mospilan® (acetamiprid) and their combination on bumblebees. Cognitive performance and foraging flights of bumblebees were studied. They are essential for the provisioning and survival of the colony. We introduce a novel method for testing four treatments simultaneously on the same colony, minimizing inter-colony differences. For this, we successfully quartered the colony and moved the queen daily between compartments. Bumblebees appeared astonishingly resilient to the PPPs tested or they have developed mechanisms for detoxification. Neither learning capacity nor flight activity were inhibited by treatment with the single PPPs or their combination.


Assuntos
Compostos de Bifenilo , Fungicidas Industriais , Neonicotinoides , Niacinamida/análogos & derivados , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Animais , Fungicidas Industriais/toxicidade , Estrobilurinas , Inseticidas/toxicidade , Piridinas/toxicidade
11.
Proc Biol Sci ; 291(2019): 20232939, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38503336

RESUMO

Mounting evidence supporting the negative impacts of exposure to neonicotinoids on bees has prompted the registration of novel 'bee-friendly' insecticides for agricultural use. Flupyradifurone (FPF) is a butenolide insecticide that shares the same mode of action as neonicotinoids and has been assessed to be 'practically non-toxic to adult honeybees' using current risk assessment procedures. However, these assessments overlook some routes of exposure specific to wild bees, such as contact with residues in soil for ground-nesters. Co-exposure with other pesticides may also lead to detrimental synergistic effects. In a fully crossed experiment, we assessed the possible lethal and sublethal effects of chronic exposure to two pesticides used on Cucurbita crops, the insecticide Sivanto Prime (FPF) and the fungicide Quadris Top (azoxystrobin and difenoconazole), alone or combined, on solitary ground-nesting squash bees (Xenoglossa pruinosa). Squash bees exposed to Quadris Top collected less pollen per flower visit, while Sivanto-exposed bees produced larger offspring. Pesticide co-exposure induced hyperactivity in female squash bees relative to both the control and single pesticide exposure, and reduced the number of emerging offspring per nest compared to individual pesticide treatments. This study demonstrates that 'low-toxicity' pesticides can adversely affect squash bees under field-realistic exposure, alone or in combination.


Assuntos
4-Butirolactona/análogos & derivados , Inseticidas , Praguicidas , Piridinas , Pirimidinas , Estrobilurinas , Abelhas , Feminino , Animais , Praguicidas/toxicidade , Inseticidas/toxicidade , Neonicotinoides/toxicidade
12.
Sci Total Environ ; 925: 171769, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38499104

RESUMO

Aquatic ecosystems continue to be threatened by chemical pollution. To what extent organisms are able to cope with chemical exposure depends on their ability to display mechanisms of defense across different organs. Among these mechanisms, biotransformation processes represent key physiological responses that facilitate detoxification and reduce the bioaccumulation potential of chemicals. Biotransformation does not only depend on the ability of different organs to display biotransformation enzymes but also on the affinity of chemicals towards these enzymes. In the present study, we explored the ability of different organs and of two freshwater fish to support biotransformation processes through the determination of in vitro phase I and II biotransformation enzyme activity, and their role in supporting intrinsic clearance and the formation of biotransformation products. Three environmentally relevant pollutants were evaluated: the polycyclic aromatic hydrocarbon (PAH) pyrene (as recommended by the OECD 319b test guideline), the fungicide azoxystrobin, and the pharmaceutical propranolol. Comparative studies using S9 sub-cellular fractions derived from the liver, intestine, gills, and brain of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) revealed significant phase I and II enzyme activity in all organs. However, organ- and species-specific differences were found. In brown trout, significant extrahepatic biotransformation was observed for pyrene but not for azoxystrobin and propranolol. In rainbow trout, the brain appeared to biotransform azoxystrobin. In this same species, propranolol appeared to be biotransformed by the intestine and gills. Biotransformation products could be detected only from hepatic biotransformation, and their profiles and formation rates displayed species-specific patterns and occurred at different magnitudes. Altogether, our findings further contribute to the current understanding of organ-specific biotransformation capacity, beyond the expression and activity of enzymes, and its dependence on specific enzyme-chemical interactions to support mechanisms of defense against exposure.


Assuntos
Ecossistema , Oncorhynchus mykiss , Pirimidinas , Estrobilurinas , Animais , Propranolol , Fígado/metabolismo , Oncorhynchus mykiss/metabolismo , Pirenos/metabolismo , Biotransformação
13.
Pestic Biochem Physiol ; 199: 105762, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458673

RESUMO

Pyraclostrobin (PYR) is a strobilurin fungicide that is commonly used in agriculture, and its use in agriculture may lead to an increase in its residue in the aquatic environment and may have a deleterious influence on the intestinal health of aquatic creatures. Here, common carp were chronically exposed to PYR (0, 0.5, or 5.0 µg/L) for 30 d to determine its effect on the physical and immunological barrier and intestinal microbiota in the intestine. PYR exposure caused significant histological changes; altered the mRNA expression levels of occludin, claudin-2, and zonula occludens-1 (ZO-1); induced oxidative stress in the common carp intestine; and increased the serum D-lactate and diamine oxidase (DAO) levels. Moreover, PYR significantly increased the protein expression levels of tumour necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1ß), and IL-6 while decreasing the level of transforming growth factor beta (TGF-ß). Further studies revealed that PYR significantly reduced lysozyme (LZM) and acid phosphatase (ACP) activities as well as complement 3 (C3) and immunoglobulin M (IgM) levels. Furthermore, PYR decreased gut microbial diversity while increasing the abundance of pathogenic bacteria such as Aeromonas and Shewanella, causing an intestinal microbial disturbances in common carp. These results imply that PYR has a negative impact on fish intestinal health and may pose serious health risks to fish by disrupting the intestinal microbiota, physical barrier, and immunological barrier in common carp.


Assuntos
Carpas , Microbioma Gastrointestinal , Animais , Dieta , Estrobilurinas , Intestinos
14.
J Agric Food Chem ; 72(8): 3998-4007, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38372233

RESUMO

Tomato wilt disease caused by Fusarium oxysporum f. sp. lycopersici (Fol) results in a decrease in tomato yield and quality. Pyraclostrobin, a typical quinone outside inhibitor (QoI), inhibits the cytochrome bc1 complex to block energy transfer. However, there is currently limited research on the effectiveness of pyraclostrobin against Fol. In this study, we determined the activity of pyraclostrobin against Fol and found the EC50 values for pyraclostrobin against 100 Fol strains (which have never been exposed to QoIs before). The average EC50 value is 0.3739 ± 0.2413 µg/mL, indicating a strong antifungal activity of pyraclostrobin against Fol, as shown by unimodal curves of the EC50 values. Furthermore, we generated five resistant mutants through chemical taming and identified four mutants with high-level resistance due to the Cytb-G143S mutation and one mutant with medium-level resistance due to the Cytb-G137R mutation. The molecular docking results indicate that the Cytb-G143S or Cytb-G137R mutations of Fol lead to a change in the binding mode of Cytb to pyraclostrobin, resulting in a decrease in affinity. The resistant mutants exhibit reduced fitness in terms of mycelial growth (25 and 30 °C), virulence, and sporulation. Moreover, the mutants carrying the Cytb-G143S mutation suffer a more severe fitness penalty compared to those carrying the Cytb-G137R mutation. There is a positive correlation observed among azoxystrobin, picoxystrobin, fluoxastrobin, and pyraclostrobin for resistant mutants; however, no cross-resistance was detected between pyraclostrobin and pydiflumetofen, prochloraz, or cyazofamid. Thus, we conclude that the potential risk of resistance development in Fol toward pyraclostrobin can be categorized as ranging from low to moderate.


Assuntos
Fusarium , Solanum lycopersicum , Estrobilurinas , Simulação de Acoplamento Molecular , Fusarium/genética , Doenças das Plantas/microbiologia
15.
Chem Res Toxicol ; 37(3): 497-512, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38419406

RESUMO

Pyraclostrobin and cyprodinil are broad-spectrum fungicides that are used in crops to control diseases. However, they are excessively used and, as a result, end up in the environment and threaten human health and ecosystems. Hence, knowledge of their mechanisms of action is critical to revealing their environmental fate and negative effects and regulating their use. In the present study, we conducted a comprehensive study to show the adverse effects of pyraclostrobin, cyprodinil, and their mixture using zebrafish larvae and different cell lines. Several end points were investigated, including mortality, development, gene expression, reporter assays, and molecular docking simulations. We found that both compounds and their mixture caused developmental delays and mortality in zebrafish, with a higher effect displayed by pyraclostrobin. Both compounds altered the expression of genes involved in several signaling pathways, including oxidative stress and mitochondrial function, lipid and drug metabolisms, the cell cycle, DNA damage, apoptosis, and inflammation. A noteworthy result of this study is that cyprodinil and the mixture group acted as NFκB activators, while pyraclostrobin demonstrated antagonist activity. The AHR activity was also upregulated by cyprodinil and the mixture group; however, pyraclostrobin did not show any effect. For the first time, we also demonstrated that pyraclostrobin had androgen receptor antagonist activity.


Assuntos
Ecossistema , Pirimidinas , Estrobilurinas , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/metabolismo , Simulação de Acoplamento Molecular
16.
Aquat Toxicol ; 269: 106864, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422928

RESUMO

The global rise in fungal pathogens has driven the increased usage of fungicides, yet our understanding of their ecotoxicity remains largely limited to acute toxicity. While such data is critical for projecting the risk of fungicide exposure to individual species, the contamination of natural systems with fungicides also has the potential to alter species interactions within communities including host-parasite relationships. We examined the effects of the fungicide pyraclostrobin on the susceptibility of larval American bullfrogs (Rana catesbeiana) to trematode (echinostome) infections using a controlled laboratory experiment. Following a 2-wk exposure to 0, 1.0, 5.2, or 8.4 µg/L of pyraclostrobin, tadpoles were then exposed to parasites either in the 1) presence (continued/simultaneous exposure) or 2) absence (fungicide-free water) of pyraclostrobin. We found that when exposed to pyraclostrobin during parasite exposure, meta cercariae counts increased 4 to 8 times compared to control tadpoles. Additionally, parasite loads were approximately 2 times higher in tadpoles with continued fungicide exposures compared to tadpoles that were moved to fresh water following fungicide exposure. This research demonstrates that fungicides at environmentally relevant concentrations can indirectly alter host-parasite interactions, which could elevate disease risk. It also underscores the need for studies that expand beyond traditional toxicity experiments to assess the potential community and ecosystem-level implications of environmental contaminants.


Assuntos
Fungicidas Industriais , Parasitos , Infecções por Trematódeos , Poluentes Químicos da Água , Animais , Fungicidas Industriais/toxicidade , Estrobilurinas/toxicidade , Larva , Ecossistema , Poluentes Químicos da Água/toxicidade , Anfíbios , Rana catesbeiana
17.
J Environ Sci Health B ; 59(4): 142-151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343082

RESUMO

Fungicides are specifically used for controlling fungal infections. Strobilurins, a class of fungicides originating from the mushroom Strobilurus tenacellus, act on the fungal mitochondrial respiratory chain, interrupting the ATP cycle and causing oxidative stress. Although strobilurins are little soluble in water, they have been detected in water samples (such as rainwater and drinking water), indoor dust, and sediments, and they can bioaccumulate in aquatic organisms. Strobilurins are usually absorbed orally and are mainly eliminated via the bile/fecal route and urine, but information about their metabolites is lacking. Strobilurins have low mammalian toxicity; however, they exert severe toxic effects on aquatic organisms. Mitochondrial dysfunction and oxidative stress are the main mechanisms related to the genotoxic damage elicited by toxic compounds, such as strobilurins. These mechanisms alter genes and cause other dysfunctions, including hormonal, cardiac, neurological, and immunological impairment. Despite limitations, we have been able to compile literature information about strobilurins. Many studies have dealt with their toxic effects, but further investigations are needed to clarify their cellular and underlying mechanisms, which will help to find ways to minimize the harmful effects of these compounds.


Assuntos
Fungicidas Industriais , Animais , Humanos , Estrobilurinas/toxicidade , Fungicidas Industriais/toxicidade , Fungicidas Industriais/análise , Estresse Oxidativo , Saúde Ambiental , Água , Mamíferos
18.
J Environ Sci Health B ; 59(4): 152-159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347689

RESUMO

Picoxystrobin is a systemic fungicide widely used on potato, citrus fruit, and Dendrobium officinale. To provide information for the risk assessment of potato, citrus, and Dendrobium officinale, field experiments combined with QuEChERS and HPLC-MS/MS were performed to detect picoxystrobin. Picoxystrobin had good linearity (R2 > 0.99), the average recovery rate was 75 - 102%, and the relative standard deviation was 1 - 11%. Picoxystrobin was utilized as the test agent in field experiments, and samples were evaluated and analyzed at various times after the final application utilizing random sampling. The results showed that picoxystrobin residuals in potato and citrus (orange meat) were ˂ 0.01 mg kg-1, whereas those in citrus whole fruit, D. officinale (fresh), and D. officinale (dried) were < 0.05 - 0.084, 0.16 - 3.82, and 0.34 - 9.05 mg kg-1, respectively. Based on these results, both the acute risk quotient (2.77%) and chronic risk quotient (8.7%) were ˂100%, and the dietary risk assessment indicated that the intake of picoxystrobin residues in potato, citrus fruit, and D. officinale did not pose a health risk. This study can guide the reasonable use of picoxystrobin in potato, citrus fruit, and D. officinale.


Assuntos
Citrus , Dendrobium , Solanum tuberosum , Estrobilurinas , Espectrometria de Massas em Tandem/métodos , Medição de Risco
19.
Sci Total Environ ; 922: 171219, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408665

RESUMO

Strobilurin fungicides (SFs) are commonly used in agriculture worldwide and frequently detected in aquatic environments. High toxicity of SFs to aquatic organisms has caused great concerns. To explore whether vitamin E (VE) can relieve the toxicity caused by pyraclostrobin (PY), zebrafish were exposed to PY with or without VE supplementation. When co-exposure with VE (20 µM), the 96 h-LC50 values of PY to zebrafish embryos, adult, and the 24 h-LC50 value of PY to larvae increased from 43.94, 58.36 and 38.16 µg/L to 64.72, 108.62 and 72.78 µg/L, respectively, indicating that VE significantly decreased the toxicity of PY to zebrafish at different life stages. In addition, VE alleviated the deformity symptoms (pericardial edema and brain damage), reduced speed and movement distance, and decreased heart rate caused by 40 µg/L PY in zebrafish larvae. Co-exposure of PY with VE significantly reduced PY-caused larval oxidative stress and immunotoxicity via increasing the activities of superoxide dismutase, catalase and level of glutathione, as well as reducing the malondialdehyde production and the expression levels of Nrf2, Ucp2, IL-8, IFN and CXCL-C1C. Meanwhile, the expression levels of gria4a and cacng4b genes, which were inhibited by PY, were significantly up-regulated after co-exposure of PY with VE. Moreover, co-exposure with VE significantly reversed the increased mitochondrial DNA copies and reduced ATP content caused by PY in larvae, but had no effect on the expression of cox4i1l and activity of complex III that reduced by PY, suggesting VE can partially improve PY-induced mitochondrial dysfunction. In conclusion, the potential mechanisms of VE alleviating PY-induced toxicity may be ascribed to decreasing the oxidative stress level, restoring the functions of heart and nervous system, and improving the immunity and mitochondrial function in zebrafish.


Assuntos
Fungicidas Industriais , Poluentes Químicos da Água , Animais , Estrobilurinas/toxicidade , Peixe-Zebra/metabolismo , Vitamina E/metabolismo , Vitamina E/farmacologia , Poluentes Químicos da Água/metabolismo , Estresse Oxidativo , Fungicidas Industriais/metabolismo , Larva , Embrião não Mamífero
20.
Biosci Biotechnol Biochem ; 88(4): 389-398, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38271595

RESUMO

Strobilurins A and X, isolated from Mucidula venosolamellata culture extracts, demonstrated potent inhibition of human melanoma G-361 cell proliferation. Strobilurin X exhibited milder inhibitory effects on human fibroblast cells (NB1RGB) compared to strobilurin A. Additional strobilurin-related compounds were isolated from the other mushroom species. Oudemansins A and B displayed weaker activities on G-361 cells than strobilurins A and B, respectively, emphasizing the importance of a conjugated double-bond structure. Among isolated compounds, strobilurin G showed the lowest IC50 value for G-361 cells. Additional strobilurins bearing various substituents on the benzene ring were synthesized. Synthetic intermediates lacking the methyl ß-methoxyacrylate group and a strobilurin analogue bearing modified ß-methoxyacrylate moiety showed almost no inhibitory activity against G-361 cells. The introduction of long or bulky substituents at the 4' position of the benzene ring of strobilurins enhanced the activity and selectivity, suggesting differential recognition of the benzene ring by G-361 and NB1RGB cells.


Assuntos
Agaricales , Fungicidas Industriais , Melanoma , Humanos , Estrobilurinas/química , Benzeno , Proliferação de Células , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...